Theoretical Studies of the EPR Parameters of Nd3+ in LiYF₄

Shao-Yi Wu^{a,b} and Hui-Ning Dong^{b,c}

- ^a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P.R. China
- ^c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China.

Reprint requests to S.-Y. W.; e-mail: wushaoyi@netease.com

Z. Naturforsch. 59a, 235 – 238 (2004); received November 6, 2003

The perturbation formulas of the electron paramagnetic resonance (EPR) parameters g_{\parallel} , g_{\perp} , A_{\parallel} and A_{\perp} for a 4f³(Nd³+) ion in tetragonal symmetry are established in this work. In these formulas, the contributions to the EPR parameters arising from the second-order perturbation terms and the admixtures of different states are included. Then the above formulas are applied to a tetragonal Nd³+ center in LiYF4, where the related crystal-field parameters are calculated from the superposition model and the local structural parameters of the Y³+ site occupied by the impurity Nd³+. The EPR parameters and the optical spectra within the $^4\text{I}_{9/2}$ and $^4\text{I}_{11/2}$ states obtained in this work agree reasonably with the observed values.

Key words: EPR; Crystal-fields and Spin Hamiltonian; Nd³⁺; LiYF₄.

1. Introduction

LiYF₄: Nd³⁺ crystal has attracted interest due to its application as laser host [1-4] and its magneto-optical properties [5]. These properties are closely related to the electronic states and the local structure of the impurity Nd³⁺. Since EPR is a useful tool to analyse electronic states and local structures of paramagnetic ions in crystals, EPR experiments were carried out on this interesting system and the g factors $g_{\parallel},\ g_{\perp},$ and hyperfine structure constants A_{\parallel} and A_{\perp} were measured recently [6]. Up to now, however, these experimental results have not been theoretically studied. In order to explane these EPR parameters, which may be helpful to understand the optical properties of LiYF₄: Nd³⁺, in this paper the perturbation formulas of $g_{\parallel}, g_{\perp}, A_{\parallel}$ and A_{\perp} for a 4f³ ion in tetragonal symmetry are established and applied to the above system. In these formulas, the contributions to the EPR parameters arising from the second-order perturbation terms and the admixtures of different states are considered.

2. Calculation

In the scheelite-structured crystal LiYF $_4$, the impurity Nd^{3+} replaces the host Y^{3+} and forms a

tetragonally distorted [NdF₈]⁵⁻ cluster [5,6]. For an Nd³⁺(4f³) ion under tetragonal symmetry, its ground ⁴I_{9/2} configuration may be split into five Kramers doublets because of the spin-orbit coupling and tetragonal crystal-field interactions. According to the $\bar{g}[=(g_{\parallel}+$ $(2g_{\perp})/3 \approx 2.34$] of the experimental g factors of Nd³⁺ in LiYF₄ [6], it can be attributed to the lowest doublet Γ_6 , whose average value \bar{g} would be about 2.67 for a 4f³ ion [7, 8]. In [7, 8] only the contributions to the EPR parameters from the first-order perturbation terms were included. However, besides the lowest Γ_6 , the other 10 irreducible representations Γ_x (i.e., five Γ_6 and five Γ_7) due to the tetragonal splitting of the ground ${}^4\mathrm{I}_{9/2}$ and the first excited ${}^4\mathrm{I}_{11/2}$ levels would mix with the lowest Γ_6 via crystal-field \hat{H}_{CF} and orbital angular momentum \hat{J} (or hyperfine structure equivalent operator \hat{N}) interactions and lead to the second-order perturbation contributions to g factors (or hyperfine structure constants), as pointed out in [9, 10]. Thus, the secondorder perturbation formulas of the EPR parameters for an Nd³⁺(4f³) ion in tetragonal symmetry can be derived as

$$g_{\parallel} = g_{\parallel}^{(1)} + g_{\parallel}^{(2)},$$
 $g_{\parallel}^{(1)} = 2g_J \langle \Gamma \gamma | \hat{J}_Z | \Gamma \gamma \rangle,$

 $0932-0784 \ / \ 04 \ / \ 0400-0235 \ \$ \ 06.00 \\ \odot \ 2004 \ Verlag \ der \ Zeitschrift \ f\"ur \ Naturforschung, T\"ubingen \cdot http://znaturforsch.com/reschung, T`ubingen \cdot http://znaturforschung, T`ubingen \cdot http://znaturf$

$$g_{\parallel}^{(2)} = 2\sum_{X} \frac{\langle \Gamma \gamma | \hat{H}_{CF} \Gamma_{X} \gamma_{X} \rangle \langle \Gamma_{X} \gamma_{X} | \hat{L}_{Z} | \Gamma \gamma \rangle}{E(\Gamma_{X}) - E(\Gamma)},$$

$$g_{\perp} = g_{\perp}^{(1)} + g_{\perp}^{(2)}, g_{\parallel}^{(1)} = 2g_{J} \langle \Gamma \gamma | \hat{J}_{X} | \Gamma \gamma \rangle, g_{\perp}^{(2)} = 0, (1)$$

$$A_{\parallel} = A_{\parallel}^{(1)} + A_{\parallel}^{(2)}, \quad A_{\parallel}^{(1)} = 2PN_{J} \langle \Gamma \gamma | \hat{N}_{Z} | \Gamma \gamma \rangle,$$

$$A_{\parallel}^{(2)} = 2P\sum_{X} \frac{\langle \Gamma \gamma | H_{CF} | \Gamma_{X} \gamma_{X} \rangle \langle \Gamma_{X} \gamma_{X} | \hat{N}_{Z} | \Gamma \gamma \rangle}{E(\Gamma_{X}) - E(\Gamma)},$$

$$A_{\perp} = A_{\perp}^{(1)} + A_{\perp}^{(2)}, \quad A_{\perp}^{(1)} = 2PN_{J} \langle \Gamma \gamma | \hat{N}_{X} | \Gamma \gamma \rangle,$$

$$A_{\perp}^{(2)} = 0, \qquad (2)$$

where the diagonal elements g_J (or N_J) of the operator \hat{J} (or \hat{N}) for various states can be obtained from [7, 8]. The nondiagonal elements g'_{I} (or N'_{I}) may occur in the expansions of (1) and (2) for the interactions between different ${}^{2S+1}L$ configurations. Note that the secondorder perturbation term $g_{\perp}^{(2)}$ (or $A_{\perp}^{(2)}$) vanishes because none of the ten Γ_{x} has a non-zero matrix element with the lowest Γ_6 doublet for both \hat{H}_{CF} , and the x or y component of \hat{J} (or \hat{N}) operators. P is the dipole hyperfine structure parameter for the $Nd^{3+}(4f^{3})$ ion in crystals. For the lowest doublet Γ_6 , the basis function $\Gamma \gamma^{(\gamma)}$ (where γ and γ' denote the two components of the irreducible representation) contains admixtures of different states, i.e., the admixture between the ground ${}^4I_{9/2}$ and the first excited ${}^4I_{11/2}$ states via crystal-field interaction, the admixture among ²H_{9/2}, ⁴G_{9/2} and ⁴I_{9/2} and that among ${}^2I_{11/2}$, ${}^2H_{11/2}$ and ${}^4I_{11/2}$ via spin-orbit coupling interaction. Thus, the basis $\Gamma \gamma^{(\gamma')}$ may be expressed as

$$|\Gamma\gamma^{(\gamma')}\rangle = \sum_{M_{J1}} C(^{4}I_{9/2}; \Gamma\gamma^{(\gamma')}M_{J1})N_{9/2}(|^{4}I_{9/2}M_{J1}\rangle + \lambda_{H}|^{2}H_{9/2}M_{J1}\rangle + \lambda_{G}|^{4}G_{9/2}M_{J1}\rangle) + \sum_{M_{J2}} C(^{4}I_{11/2}; \Gamma\gamma^{(\gamma')}M_{J1})N_{11/2}(|^{4}I_{11/2}M_{J2}\rangle + \lambda_{H}'|^{2}H_{11/2}M_{J2}\rangle + \lambda_{I}|^{2}I_{11/2}M_{J2}\rangle),$$
(3)

where M_{J1} and M_{J2} are in the ranges of -9/2 to 9/2 and -11/2 to 11/2, respectively. The coefficients $C(^4\mathrm{I}_{9/2};\Gamma\gamma^{(\gamma')}M_{J1})$ and $C(^4\mathrm{I}_{11/2};\Gamma\gamma^{(\gamma')}M_{J1})$ can be obtained by diagonalizing the $22 \cdot 22$ energy matrix containing $^4\mathrm{I}_{9/2}$ and $^4\mathrm{I}_{11/2}$ states. N_i and λ_i are, respectively, the normalization factors and the mixing coefficients, which can be determined by using spin-orbit coupling matrix elements and the perturbation method.

In LiYF₄, the Y³⁺ ion is coordinated to eight nearest F⁻ ions which form the edges of a slightly distorted dodecahedron with S₄ local symmetry [5]. Because of the rather small distortion from D_{2d} to S₄ [11–14], the imaginary parts of the rank-4 and rank-6 crystal-field parameters are very small, as pointed out in [13,15], and so their contributions to the coefficient $C(^{4}I_{9/2};\Gamma\gamma^{(\gamma')}M_{J1})$ or $C(^{4}I_{9/2};\Gamma\gamma^{(\gamma')}M_{J1})$ in the basis $\Gamma\gamma^{(\gamma')}$, and hence to the EPR parameters may be regarded as insignificant. Thus the D_{2d} symmetry turns out to be a good approach, and we still take D_{2d} approximation here for simplicity. For the Nd³⁺(4f³) ion in D_{2d} symmetry, the crystal-field interaction \hat{H}_{CF} in the above formulas can be written in terms of the Stevens operator equivalents as [8, 10]

$$\hat{H}_{\rm CF} = B_2^0 O_2^0 + B_4^0 O_4^0 + B_6^0 O_6^0 + B_4^4 O_4^4 + B_6^4 O_6^4, \tag{4}$$

where B_k^q (k = 2, 4 and 6; $|q| \le k$) are the crystal-field parameters. By using the superposition model (SPM) [16], they can be expressed as

$$B_k^q = \sum_{j=1}^N \bar{A}_k(R_0) (R_0/R_j)^{t_k} K_k^q(\theta_j, \phi_j),$$
 (5)

where $K_k^q(\theta_i, \phi_i)$ are the coordination factors [16, 17] obtained from the local structural data of the studied Nd^{3+} center. t_k and $\bar{A}_k(R_0)$ are, respectively, the powerlaw exponents and the intrinsic parameters (with the reference distance or impurity-ligand distance R_0). Among the eight nearest F^- ions of the Y^{3+} site, four of them are at the distance $R_1^{\rm H}$ (≈ 2.2481 Å) and the angle θ_1 ($\approx 67.14^{\circ}$), and the other four are at the distance $R_2^{\rm H}$ (≈ 2.2996 Å) and the angle θ_2 ($\approx 37.86^{\circ}$), where θ_i is the angle between R_i^H and the four-fold axis [5]. Since the ionic radius r_i ($\approx 0.995 \text{ Å}$ [18]) of the impurity Nd^{3+} is larger than the radius r_h (\approx 0.893 Å [18]) of the host Y^{3+} ion, we can reasonably estimate the impurity-ligand distances R_i of the impurity center from the host values R_i^{H} and the empirical relationship [19]

$$R_i \approx R_i^{\mathrm{H}} + (r_i - r_h)/2. \tag{6}$$

Thus, the average impurity-ligand distance \bar{R} (\approx 2.325 Å) is taken as the reference distance of the studied system, i.e., $R_0 \approx \bar{R}$.

In view of the admixture (or covalency) between the 4f orbitals of Nd^{3+} and the 2p orbitals of F^- ions

Table 1. The optical spectra (in cm $^{-1}$) of the $^4I_{9/2}$ and $^4I_{11/2}$ states of LiYF₄: Nd $^{3+}$.

1	No.	1	2	3	4			σ^{c}
	Cal.a	139	180	244	533			
$^{4}I_{9/2}$	Cal.b	150	193	264	552			
,	Expt. [15]	136	179	244	524			
	No.	5	6	7	8	9	10	
	Cal.a	1982	2020	2027	2057	2220	2255	10.1
$^{4}I_{11/2}$	Cal.b	2001	2042	2050	2080	2232	2270	11.2
,	Expt. [15]	1997	2040	2042	2077	2227	2262	

^a Calculation based on the five crystal-field parameters B_k^q in [13]. ^b Calculation based on the SPM parameters in this work. ^c The root-mean-square deviation for the optical spectra is defined as $\sigma = [\Sigma_i^n (E_i^c - E_i^e)^2/n]^{1/2}$, where E_i^c and E_i^e denote the calculated and experimental optical spectral data. n is the number of spectral bands.

for the Nd³⁺-F⁻ bond in LiYF₄:Nd³⁺, the orbital reduction factor k (\approx 0.9818 [20]) for the similar tetragonal CaF₂:Nd³⁺ system can also be applied here. The dipole hyperfine structure parameter can be written as $P\approx kP_0$ (where P_0 is the corresponding free-ion value). For a free Nd³⁺ ion [7], the values for P_0 are about 54.2 · 10⁻⁴ cm⁻¹ and 33.7 · 10⁻⁴ cm⁻¹ for the isotopes ¹⁴³Nd and ¹⁴⁵Nd, respectively. The free-ion parameters of the Coulomb repulsion ($E^1\approx 4821.7$ cm⁻¹, $E^2\approx 23.72$ cm⁻¹ and $E^3\approx 485.37$ cm⁻¹) and the two-body interaction parameters ($\alpha\approx 21.79$ cm⁻¹, $\beta\approx -604$ cm⁻¹ and $\gamma\approx 1513$ cm⁻¹) as well as the spin-orbit coupling coefficient ($\zeta_{4f}\approx 874.5$ cm⁻¹) in the energy matrix were obtained for LiYF₄:Nd³⁺ in [13].

According to [21, 22], the power-law exponents $t_4 \approx$ 6.3, $t_6 \approx 10.1$ and the intrinsic parameters $\bar{A}_4(R_0) \approx$ 75 cm⁻¹ and $\bar{A}_6(R_0) \approx 34$ cm⁻¹ were acquired from the similar tetragonal CaF₂:Nd³⁺ system, where the reference distance R_0 (≈ 2.356 Å [21]) is close to that (≈ 2.325 Å) of the studied system. For the sake of reducing the number of adjustable parameters, the above superposition model (SPM) parameters are also adopted for Nd³⁺ in LiYF₄ of this work, with only the rank-2 SPM parameters t_2 and $\bar{A}_2(R_0)$ adjustable. By fitting the optical spectra of LiYF₄:Nd³⁺ within the ground ${}^{4}I_{9/2}$ and the first excited ${}^{4}I_{11/2}$ states, we have $t_2 \approx 3.8$ and $\bar{A}_2(R_0) \approx 460$ cm⁻¹. The comparisons between the theoretical and experimental optical spectra within $^4\mathrm{I}_{9/2}$ and $^4\mathrm{I}_{11/2}$ states are shown in Table 1. Substituting the basis functions based on the above parameters into (1) and (2), the EPR parameters g_{\parallel}, g_{\perp} , A_{\parallel} and A_{\perp} for Nd³⁺ in LiYF₄ are calculated and collected in Table 2. For comparisons, the theoretical optical spectra and EPR parameters based on the five adjustable crystal-field parameters (i.e., $B_2^0 \approx 421 \text{ cm}^{-1}$,

Table 2. The g factors and the hyperfine structure constants (in 10^{-4} cm⁻¹) for Nd³⁺ in LiYF₄.

	g_{\parallel}	g_{\perp}	A_{\parallel} (¹⁴³ Nd)	$A_{\perp}(^{143}\mathrm{Nd})$	A_{\parallel} (¹⁴³ Nd)	$A_{\perp}(^{143}\text{Nd})$
Cal.a	1.990	2.574	207.3	269.4	127.1	162.2
Cal.b	1.972	2.568	201.6	260.5	125.7	160.8
Expt. [6]	1.955(2)	2.530(3)	196.5 (2)	254.2(2)	121.4(2)	157.1(2)

^a Calculation based on the five crystal-field parameters B_k^q in [13].

 $B_4^0 \approx -985 \text{ cm}^{-1}$, $B_4^4 \approx -1146 \text{ cm}^{-1}$, $B_6^0 \approx 7 \text{ cm}^{-1}$, $B_6^4 \approx -1074 \text{ cm}^{-1}$) in [13] are also given in Table 1 and 2, respectively.

3. Discussion

From Table 1 and 2 several points may be discussed here.

- 1) The calculated g_{\parallel} , g_{\perp} , A_{\parallel} , and A_{\perp} , based on the perturbation formulas of the EPR parameters for a 4f³ ion in tetragonal symmetry and the SPM parameters of this work, agree better than those based on the B_{ν}^{q} of [13] with the observed values, suggesting that the above perturbation formulas of the EPR parameters are suitable. Meanwhile, the SPM parameters $t_2 \approx 3.8$ and $\bar{A}_2(R_0) \approx 460 \text{ cm}^{-1} \text{ for the (NdF}_8)^{5-} \text{ cluster obtained}$ in this work are also comparable with, but smaller, than those $(t_2 \approx 5.0(5) \text{ and } \bar{A}_2(R_0) \approx 630(20) \text{ cm}^{-1} \text{ [23]})$ for the similar $(NdF_8)^{5-}$ cluster in BaY₂F₈. Since the reference distance R_0 ($\approx 2.325 \text{ Å}$) for LiYF₄:Nd³⁺ is larger than that ($\approx 2.275 \text{ Å} [23]$) for BaY₂F₈:Nd³⁺, the weaker crystal fields and hence the smaller rank-2 SPM parameters in this work can be regarded as suitable.
- 2) Based on the calculations, we find that the contributions to g_{\parallel} or A_{\parallel} due to the second-order perturbation terms amount to about $9\sim10\%$ of those due to the first-order perturbation terms. Obviously, in order to obtain a better interpretation of the EPR parameters of Nd³⁺ in crystals, the second-order perturbation contributions should be considered.
- 3) The calculated optical spectra of the ${}^4\mathrm{I}_{9/2}$ and ${}^4\mathrm{I}_{11/2}$ states in this work are also consistent with the experimental data, whereas the corresponding root-mean-square deviation σ is slightly larger than that of the previous work [13]. Even so, the theoretical EPR parameters based on the B_k^q in [13] agree poorly with the observed values. This means that the crystal-field parameters good for optical calculations are not necessarily good for studies of the EPR parameters of Nd³⁺ in LiYF₄, as mentioned for Er³⁺ in zircon-type compounds by Vishwamittar et. al. [24]. In view of this, the

^b Calculation based on the SPM parameters in this work.

whole theoretical results in this paper can be regarded as more reasonable.

4) There may be some errors in our calculations. For simplicity, the D_{2d} approximation instead of the S_4 symmetry is adopted to describe the crystal-field interaction by (4) in this work. In fact, even though one takes exactly the S_4 symmetry, the magnitudes of the imaginary parts of the rank-4 and rank-6 crystal-field parameters are rather small, as stated in [13–15]. As a result, their contributions to the coefficient

 $C(^4\mathrm{I}_{9/2};\Gamma\gamma^{(\gamma')}M_{J1})$ or $C(^4\mathrm{I}_{11/2};\Gamma\gamma^{(\gamma')}M_{J1})$ in $\Gamma\gamma^{(\gamma')}$ and hence to the final EPR parameters are expected to be smaller than 5%.

In summary, the perturbation formulas of the EPR parameters for a $4f^3(Nd^{3+})$ ion in tetragonal symmetry are established for the first time. Based on these formulas, the EPR parameters for Nd^{3+} in LiYF₄ are theoretically interpreted. Obviously, these formulas can also be applied to Nd^{3+} in other tetragonal ABO₄-type compounds.

- L. C. Courrol, E. P. Maldonado, L. Gomes, N. D. Vieira Jr., I. M. Ranieri, S. P. Morato et al., Optical Materials 14, 81 (2000).
- [2] P.H. Chiu, P. Pax, and R. Aubert, in: T. Yajima, K. Yoshihara, C.B. Harris, and S. Shionoya (Eds.), Springer Series in Chemical Physics, Springer-Verlag, Berlin Heidelberg 1988, Vol. 48, p. 44.
- [3] N. D. Vieira Jr., I. M. Ranieri, L. V. G. Tarelho, N. U. Wetter, S. L. Baldochi, L. Gomes, et al., J. Alloys and Comp. 344, 231 (2002).
- [4] T. Chuang and H. R. Verdun, IEEE J. Quant. Electron. **32**, 79 (1996).
- [5] H. De Leebeeck, K. Binnemans, and C. Gorller-Walrand, J. Alloys and Comp. 291, 300 (1999).
- [6] K. J. Guedes, K. Krambrock, and J. Y. Gesland, J. Alloys and Comp. 344, 251 (2002).
- [7] A. Abragam and B. Bleanely, Electron Paramagnetic Resonance of Transition Ions, Oxford University Press, London 1970.
- [8] L. A. Sorin and M. V. Vlasova, Electron Spin Resonance of Paramagnetic Crystals, Translated from Russian by P. Gluck, Plenum Press, New York 1973.
- [9] S. Y. Wu and W. C. Zheng, Phys. Rev. B 65, 224107 (2002).
- [10] S. Y. Wu and W. C. Zheng, Spectrochim. Acta A 58, 3179 (2002).
- [11] M. A. Couto dos Santos, E. Antic-Fidancev, J. Y. Ges-

- land, J. C. Krupa, M. Lemaýtre-Blaise, and P. Porcher, J. Alloys and Comp. 275/277, 435 (1998).
- [12] A. A. S. da Gama, G. F. de Sa, P. Porcher, and P. Caro, J. Phys. Chem. Solids 75, 2583 (1981).
- [13] M. A. Couto dos Santos, P. Porcher, J.-C. Krupa, and J.-Y. Gesland, J. Phys.: Condens. Matter 8, 4643 (1996).
- [14] R. Cavellec, S. Hubert, and E. Simoni, J. Solid State Chem. 129, 189 (1997).
- [15] F. G. Anderson, H. Weidner, P. L. Summers, and R. E. Peale, J. Lumin. 62, 77 (1994).
- [16] D. J. Newman and B. Ng, Rep. Prog. Phys. 52, 699 (1989).
- [17] C. Rudowicz, J. Phys. C: Solid State Phys. 20, 6033 (1987).
- [18] R.C. Weast, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton 1989, p. F187.
- [19] Z. M. Li and W. L. Shuen, J. Phys. Chem. Solids 57, 1073 (1996).
- [20] C. A. Freeth and G. D. Jones, J. Phys. C 15, 6833 (1982).
- [21] M. F. Reid and P. H. Butler, J. Phys. C 15, 4103 (1982).
- [22] D. J. Newman, Aust. J. Phys. 31, 79 (1978).
- [23] N. Magnani, G. Amoretti, A. Baraldi, and R. Capelletti, Eur. Phys. J. B 29, 79 (2002).
- [24] Vishwamittar and S.P. Puri, Phys. Rev. B **9**, 4673 (1974).